Excerpt of the Gapminder data on life expectancy, GDP per capita, and population by country.

gapminder

Format

The main data frame gapminder has 1704 rows and 6 variables:

country

factor with 142 levels

continent

factor with 5 levels

year

ranges from 1952 to 2007 in increments of 5 years

lifeExp

life expectancy at birth, in years

pop

population

gdpPercap

GDP per capita (US$, inflation-adjusted)

The supplemental data frame gapminder_unfiltered was not filtered on year or for complete data and has 3313 rows.

Source

http://www.gapminder.org/data/

See also

country_colors for a nice color scheme for the countries

Examples

str(gapminder)
#> Classes ‘tbl_df’, ‘tbl’ and 'data.frame': 1704 obs. of 6 variables: #> $ country : Factor w/ 142 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 ... #> $ continent: Factor w/ 5 levels "Africa","Americas",..: 3 3 3 3 3 3 3 3 3 3 ... #> $ year : int 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ... #> $ lifeExp : num 28.8 30.3 32 34 36.1 ... #> $ pop : int 8425333 9240934 10267083 11537966 13079460 14880372 12881816 13867957 16317921 22227415 ... #> $ gdpPercap: num 779 821 853 836 740 ...
head(gapminder)
#> # A tibble: 6 x 6 #> country continent year lifeExp pop gdpPercap #> <fct> <fct> <int> <dbl> <int> <dbl> #> 1 Afghanistan Asia 1952 28.8 8425333 779. #> 2 Afghanistan Asia 1957 30.3 9240934 821. #> 3 Afghanistan Asia 1962 32.0 10267083 853. #> 4 Afghanistan Asia 1967 34.0 11537966 836. #> 5 Afghanistan Asia 1972 36.1 13079460 740. #> 6 Afghanistan Asia 1977 38.4 14880372 786.
summary(gapminder)
#> country continent year lifeExp #> Afghanistan: 12 Africa :624 Min. :1952 Min. :23.60 #> Albania : 12 Americas:300 1st Qu.:1966 1st Qu.:48.20 #> Algeria : 12 Asia :396 Median :1980 Median :60.71 #> Angola : 12 Europe :360 Mean :1980 Mean :59.47 #> Argentina : 12 Oceania : 24 3rd Qu.:1993 3rd Qu.:70.85 #> Australia : 12 Max. :2007 Max. :82.60 #> (Other) :1632 #> pop gdpPercap #> Min. :6.001e+04 Min. : 241.2 #> 1st Qu.:2.794e+06 1st Qu.: 1202.1 #> Median :7.024e+06 Median : 3531.8 #> Mean :2.960e+07 Mean : 7215.3 #> 3rd Qu.:1.959e+07 3rd Qu.: 9325.5 #> Max. :1.319e+09 Max. :113523.1 #>
table(gapminder$continent)
#> #> Africa Americas Asia Europe Oceania #> 624 300 396 360 24
aggregate(lifeExp ~ continent, gapminder, median)
#> continent lifeExp #> 1 Africa 47.7920 #> 2 Americas 67.0480 #> 3 Asia 61.7915 #> 4 Europe 72.2410 #> 5 Oceania 73.6650
plot(lifeExp ~ year, gapminder, subset = country == "Cambodia", type = "b")
plot(lifeExp ~ gdpPercap, gapminder, subset = year == 2007, log = "x")
if (require("dplyr")) { gapminder %>% filter(year == 2007) %>% group_by(continent) %>% summarise(lifeExp = median(lifeExp)) # how many unique countries does the data contain, by continent? gapminder %>% group_by(continent) %>% summarize(n_obs = n(), n_countries = n_distinct(country)) # by continent, which country experienced the sharpest 5-year drop in # life expectancy and what was the drop? gapminder %>% group_by(continent, country) %>% select(country, year, continent, lifeExp) %>% mutate(le_delta = lifeExp - lag(lifeExp)) %>% summarize(worst_le_delta = min(le_delta, na.rm = TRUE)) %>% filter(min_rank(worst_le_delta) < 2) %>% arrange(worst_le_delta) }
#> # A tibble: 5 x 3 #> # Groups: continent [5] #> continent country worst_le_delta #> <fct> <fct> <dbl> #> 1 Africa Rwanda -20.4 #> 2 Asia Cambodia -9.10 #> 3 Americas El Salvador -1.51 #> 4 Europe Montenegro -1.46 #> 5 Oceania Australia 0.170